Product of elementary matrix

second sequence of elementary row operations, which when applied to B recovers A. True-False Exercises In parts (a)–(g) determine whether the statement is true or false, and justify your answer. (a) The product of two elementary matrices of the same size must be an elementary matrix. Answer: False (b) Every elementary matrix is invertible ...

Product of elementary matrix. Furthermore, can be transformed into by elementary row operations, that is, by pre-multiplying by an invertible matrix (equal to the product of the elementary matrices used to perform the row operations): But we know that pre-multiplication by an invertible (i.e., full-rank) matrix does not alter the rank.

Step-by-Step 1 The matrix is given to be: . The matrix can be expressed as a product of elementry matrix as, , where is an elementry matrix. Step-by …

An elementary matrix is a matrix that can be obtained from the identity matrix by one single elementary row operation. Multiplying a matrix A by an elementary matrix E (on the left) causes ... as a product of elementary matrices. This is done by examining the row operations used in nding the inverse of a matrix using the direct method. Example ...Expert Answer. if you s …. Express the following invertible matrix A as a product of elementary matrices You can resize a matrix when appropriate) by clicking and dragging the bottom-right corner of the matrix -3 2 Number of Matrices: 1 A0 0 00.OD. True; since every invertible matrix is a product of elementary matrices, every elementary matrix must be invertible. Click to select your answer. Mark each statement True or False. Justify each answer. Complete parts (a) through (e) below. Tab c. If A=1 and ab-cd #0, then A is invertible. Lcd a b O A. True; A = is invertible if and only if ...Characterize the integral domains R such that every square invertible matrix over R is a product of elementary matrices. (P2) Characterize the integral domains R such that every square singular matrix over R is a product of idempotent matrices.which is a product of elementary matrices. So any invertible matrix is a product of el-ementary matrices. Conversely, since elementary matrices are invertible, a product of elementary matrices is a product of invertible matrices, hence is invertible by Corol-lary 2.6.10. Therefore, we have established the following.The identity matrix only contains only 1 and 0, but the elementary matrix can contain any no zero numbers. An elementary matrix is actually derived from the identity matrix. Is the Elementary Matrix Always a Square Matrix? Yes, the elementary matrix is always a square matrix. Does the Row or Column Operation Produce the Same Elementary Matrix?A square matrix is invertible if and only if it is a product of elementary matrices. It followsfrom Theorem 2.5.1 that A→B by row operations if and onlyif B=UA for some invertible matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.) Example 2.5.3 Express A= −2 3 1 0 as a product of elementary matrices ...

Sep 5, 2018 · $\begingroup$ Try induction on the number of elementary matrices that appear as factors. The theorem you showed gives the induction step (as well as the base case if you start from two factors). $\endgroup$ matrix (Theorem 1.5.3). • Use the inversion algorithm to find the inverse of an invertible matrix. • Express an invertible matrix as a product of elementary matrices. Exercise Set 1.5 1. Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer: (a) Elementary (b) Not elementary (c) Not elementary (d) Not elementary 2. I have been stuck of this problem forever if any one can help me out it would be much appreciated. I need to express the given matrix as a product of elementary matrices. $$ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 2 & 2 & 4 \end{pmatrix} $$Dec 13, 2014 · 2 Answers. Sorted by: 1. The elementary matrices are invertible, so any product of them is also invertible. However, invertible matrices are dense in all matrices, and determinant and transpose are continuous, so if you can prove that det ( A) = det ( A T) for invertible matrices, it follows that this is true for all matrices. Share. Matrix P is invertible as a product of invertible matrices, with the inverse P−1.Now, if x^ solves the rst system, i.e., Ax^ = b, then it also solves the second one, since it is given by PAx^ = Pb.In the opposite direction, if x~ solves the second system then it also solves the rst one, since it is obtained as P−1A′x~ = P−1b′. To conclude, if one needs to solve a system …Oct 26, 2016 · Since the inverse of a product of invertible elementary matrices is a product of the same number of elementary matrices (because the inverse of each invertible elementary matrix is an elementary matrix) it suffices to show that each invertible 2x2 matrix is the product of at most 4 elementary matrices. Given the matrix $\mathbf A = \begin{pmatrix}3&5\\2&4\end{pmatrix}$, how would I go about writing this as a product of elementary matrices? I understand the concept of elementary matrices I'm just a little unsure algorithmically what the steps should be. Any help would be appreciated.

Math. Other Math. Other Math questions and answers. If A is an nxn invertible matrix, which of the following is/are true? (select all that apply) A is row equivalent to the nxn identity matrix. rank (A)=n A is a product of elementary matrices. Matrix A has n pivots. The span of the columns of A is Rn.Final answer. Suppose A is an invertible matrix, which of the following statements are true and which are false? Justify your answers in your work file. Also, type True or False for a to d in the answer box for this question. a. A can be written as a product of elementary matrices b. A is a square matrix c. A−1 can be written as a product of ...Keisan English website (keisan.casio.com) was closed on Wednesday, September 20, 2023. Thank you for using our service for many years. Please note that all registered data will be deleted following the closure of this site.Product of elementary matrices Dr Peyam 157K subscribers Join Subscribe 570 30K views 4 years ago Matrix Algebra Writing a matrix as a product of …... product of elementary matrices. Key Point. In section 1.4, we mentioned that the reduced row echelon form of a square matrix is always either: 1. the ...Given a 2 × 2 invertible matrix, we have seen we can write it as a product of elementary matrices. What is the largest amount of elementary matrices required? Give an example of a matrix that requires this number of elementary matrices. linear-algebra; matrices; Share. Cite. Follow

Ramon clemente.

the determinat of a product of matrices is the product of the determinants, and an elementary matrix of type 1) has negative determinat (it is an alternating multilinear …by a product of elementary matrices (corresponding to a sequence of elementary row operations applied to In) to obtain A. This means that A is row-equivalent to In, which is (f). Last, if A is row-equivalent to In, we can write A as a product of elementary matrices, each of which is invertible. Since a product of invertible matrices is invertibleStep-by-Step 1 The matrix is given to be: . The matrix can be expressed as a product of elementry matrix as, , where is an elementry matrix. Step-by …$\begingroup$ @GeorgeTomlinson if I have an identity matrix, I don't understand how a single row operation on my identity matrix corresponds to the given matrix. If that makes any sense whatsoever. $\endgroup$1. PA is the matrix obtained fromA by doing these interchanges (in order) toA. 2. PA has an LU-factorization. The proof is given at the end of this section. A matrix P that is the product of elementary matrices corresponding to row interchanges is called a permutation matrix. Such a matrix is obtained from the identity matrix by arranging the ...I understand how to reduce this into row echelon form but I'm not sure what it means by decomposing to the product of elementary matrices. I know what elementary matrices are, sort of, (a row echelon form matrix with a row operation on it) but not sure what it means by product of them. could someone demonstrate an example please? It'd be very ...

A as a product of elementary matrices. Since A 1 = E 4E 3E 2E 1, we have A = (A 1) 1 = (E 4E 3E 2E 1) 1 = E 1 1 E 1 2 E 1 3 E 1 4. (REMEMBER: the order of multiplication switches when we distribute the inverse.) And since we just saw that the inverse of an elementary matrix is itself an elementary matrix, we know that E 1 1 E 1 2 E 1 3 E 1 4 is ...Elementary Matrices and Row Operations Theorem (Elementary Matrices and Row Operations) Suppose that E is an m m elementary matrix produced by applying a particular elementary row operation to I m, and that A is an m n matrix. Then EA is the matrix that results from applying that same elementary row operation to A 9/26/2008 Elementary Linear ...By the way this is from elementary linear algebra 10th edition section 1.5 exercise #29. There is a copy online if you want to check the problem out. Write the given matrix as a product of elementary matrices. \begin{bmatrix}-3&1\\2&2\end{bmatrix} One can think of each row operation as the left product by an elementary matrix. Denoting by B the product of these elementary matrices, we showed, on the left, that BA = I, and therefore, B = A −1. On the right, we kept a record of BI = B, which we know is the inverse desired. This procedure for finding the inverse works for square matrices ...Learning a new language is not an easy task, especially a difficult language like English. Use this simple guide to distinguish the levels of English language proficiency. The first two of the levels of English language proficiency are the ...Jun 16, 2019 · You simply need to translate each row elementary operation of the Gauss' pivot algorithm (for inverting a matrix) into a matrix product. If you permute two rows, then you do a left multiplication with a permutation matrix. If you multiply a row by a nonzero scalar then you do a left multiplication with a dilatation matrix. 9 0 0 0 Inverses and Elementary Matrices and E−1 3 = 0 0 0 −5 0 0 1 . Suppose that an operations. Let × n matrix E1, E2, ..., is carried to a matrix B (written A → B) by a series of k elementary row Ek denote the corresponding elementary matrices. By Lemma 2.5.1, the reduction becomes → E1A → E2E1A → E3E2E1A → ··· → EkEk−1 E2E1A = B Determinant of product equals product of determinants. We have proved above that all the three kinds of elementary matrices satisfy the property In other words, the determinant of a product involving an elementary matrix equals the product of the determinants. We will prove in subsequent lectures that this is a more general property that holds ... Jul 1, 2014 · Every invertible n × n matrix M is a product of elementary matrices. Proof (HF n) ⇒ (SFC n). Let A, B be free direct summands of R n of ranks r and n − r, respectively. By hypothesis, there exists an endomorphism β of R n with Ker (β) = B and Im (β) = A, which is a product of idempotent endomorphisms of the same rank r, say β = π 1 ... A as a product of elementary matrices. Since A 1 = E 4E 3E 2E 1, we have A = (A 1) 1 = (E 4E 3E 2E 1) 1 = E 1 1 E 1 2 E 1 3 E 1 4. (REMEMBER: the order of multiplication switches when we distribute the inverse.) And since we just saw that the inverse of an elementary matrix is itself an elementary matrix, we know that E 1 1 E 1 2 E 1 3 E 1 4 is ...Elementary matrices are square matrices obtained by performing only one-row operation from an identity matrix I n I_n I n . In this problem, we need to know if the product of two elementary matrices is an elementary matrix.

An operation on M 𝕄 is called an elementary row operation if it takes a matrix M ∈M M ∈ 𝕄, and does one of the following: 1. interchanges of two rows of M M, 2. multiply a row of M M by a non-zero element of R R, 3. add a ( constant) multiple of a row of M M to another row of M M. An elementary column operation is defined similarly.

Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ...Denote by the columns of the identity matrix (i.e., the vectors of the standard basis).We prove this proposition by showing how to set and in order to obtain all the possible …[Math] Express this matrix as the product of elementary matrices To do this sort of problem, consider the steps you would be taking for row elimination to get to the identity matrix. Each of these steps involves left multiplication by an elementary matrix, and those elementary matrices are easy to invert.8,102 6 39 70 asked Oct 26, 2016 at 3:01 david mah 235 1 5 10 Many people use "elementary matrix" to mean "matrix with 1's on the diagonal and at most one …Terms in this set (16) True. A system of one linear equation in two variables is always consistent. False. Both Matrix addition and multiplication are commutative. True. The identity matrix is an elementary matrix. True. A square matrix is nonsingular when it can be written as the product of elementary matricies.An orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors or orthonormal vectors. Similarly, a matrix Q is orthogonal if its transpose is equal to its inverse.The product of elementary matrices need not be an elementary matrix. Recall that any invertible matrix can be written as a product of elementary matrices, and not all invertible matrices are elementary.Apologies first, for the error @14:45 , the element 2*3 = 0 and not 1, and for the video being a little rusty as I was doing it after a while and using a new...Yes, we end up with one native 401 Okay, so now we have the four elementary matrices, but we're not quite done. The next step is to turn each of these matrices into their inverse. In order to find the embrace, …

Tamil actress sexy video.

Ku vs duke football tickets.

Proposition 2.9.1 2.9. 1: Reduced Row-Echelon Form of a Square Matrix. If R R is the reduced row-echelon form of a square matrix, then either R R has a row of zeros or R R is an identity matrix. The proof of this proposition is left as an exercise to the reader. We now consider the second important theorem of this section.Justify the answer. Each elementary matrix is invertible. Choose the correct answer below. A. The statement is true. Since every invertible matrix is a product of elementary matrices, every elementary matrix must be invertible. B. The statement is false. It is possible to perform row operations on an nxn matrix that do not result in the ...Find the probability of getting 5 Mondays in the month of february in a leap year. Louki Akrita, 23, Bellapais Court, Flat/Office 46, 1100, Nicosia, Cyprus. Cyprus reg.number: ΗΕ 419361. E-mail us: [email protected] Our Service is useful for: Plainmath is a platform aimed to help users to understand how to solve math problems by providing ...The reduced row echelon form of the matrix is the identity matrix I 2, so its determinant is 1. The second-last step in the row reduction was a row replacement, so the second-final matrix also has determinant 1. The previous step in the row reduction was a row scaling by − 1 / 7; since (the determinant of the second matrix times − 1 / 7) is 1, the determinant …product of determinants, it is enough to show that detET = detE for any elementary matrix. Indeed, if E switches two rows, or if E multiplies a row by a constant, then E = ET, so their determinants are clearly equal. If E adds a multiple of one row to another, then detE = 1, and ET is another elementary matrix of the same type, so det(ET) = 1 ...An elementary matrix is a square matrix formed by applying a single elementary row operation to the identity matrix. Suppose is an matrix. If is an elementary matrix formed by performing a certain row operation on the identity matrix, then multiplying any matrix on the left by is equivalent to performing that same row operation on . As there ... 3.10 Elementary matrices. We put matrices into reduced row echelon form by a series of elementary row operations. Our first goal is to show that each elementary row operation may be carried out using matrix multiplication. The matrix E= [ei,j] E = [ e i, j] used in each case is almost an identity matrix. The product EA E A will carry out the ... Instructions: Use this calculator to generate an elementary row matrix that will multiply row p p by a factor a a, and row q q by a factor b b, and will add them, storing the results in row q q. Please provide the required information to generate the elementary row matrix. The notation you follow is a R_p + b R_q \rightarrow R_q aRp +bRq → Rq. A payoff matrix, or payoff table, is a simple chart used in basic game theory situations to analyze and evaluate a situation in which two parties have a decision to make. The matrix is typically a two-by-two matrix with each square divided ...A square matrix is invertible if and only if it is a product of elementary matrices. It followsfrom Theorem 2.5.1 that A→B by row operations if and onlyif B=UA for some invertible matrix B. In this case we say that A and B are row-equivalent. (See Exercise 2.5.17.) Example 2.5.3 Express A= −2 3 1 0 as a product of elementary matrices ...Given the matrix $\mathbf A = \begin{pmatrix}3&5\\2&4\end{pmatrix}$, how would I go about writing this as a product of elementary matrices? I understand the concept of elementary matrices I'm just a little unsure algorithmically what the steps should be. Any help would be appreciated. ….

(a) (b): Let be elementary matrices which row reduce A to I: Then Since the inverse of an elementary matrix is an elementary matrix, A is a product of elementary matrices. (b) (c): Write A as a product of elementary matrices: Now Hence, (c) (d): Suppose A is invertible. The system has at least one solution, namely .1. PA is the matrix obtained fromA by doing these interchanges (in order) toA. 2. PA has an LU-factorization. The proof is given at the end of this section. A matrix P that is the product of elementary matrices corresponding to row interchanges is called a permutation matrix. Such a matrix is obtained from the identity matrix by arranging the ...Question 35276: factor the matrix A into a product of elementary matrices. ... (Show Source):. You can put this solution on YOUR website! ... USE R12(1).....THAT IS ...Theorem of Product of Elementary Matrices Let A be an n x n matrix. Then A is invertible if and only if it can be written as a product of elementary matrices. Given the following matrix A, write A as a product of elementary matrices: The easiest way in finding the product of elementary matrices is find the matrix U, or finding the inverse ...Write a Matrix as a Product of Elementary Matrices. Mathispower4u. 269K subscribers. Subscribe. 1.8K. 251K views 11 years ago Introduction to Matrices and Matrix Operations. This video...Last, if A is row-equivalent to In, we can write A as a product of elementary matrices, each of which is invertible. Since a product of invertible matrices is invertible (by Corollary 2.6.10), we conclude that A is invertible, as needed. Exercises for 2.8 Skills(a) (b): Let be elementary matrices which row reduce A to I: Then Since the inverse of an elementary matrix is an elementary matrix, A is a product of elementary matrices. (b) (c): Write A as a product of elementary matrices: Now Hence, (c) (d): Suppose A is invertible. The system has at least one solution, namely .Advanced Math. Advanced Math questions and answers. 1. Write the matrix A as a product of elementary matrices. 2 Factor the given matrix into a product of an upper and a lower triangular matrices 1 2 0 A=11 1. Product of elementary matrix, Jul 31, 2006 · It would depend on how you define "elementary matrices," but if you use the usual definition that they are the matrices corresponding to row transpositions, multiplying a row by a constant, and adding one row to another, it isn't hard to show all such matrices have nonzero determinants, and so by the product rule for determinants, (det(AB)=det(A)det(B) ), the product of elementary matrices ... , We also know that an elementary decomposition can be found by doing row operations on the matrix to find its inverse, and taking the inverses of those elementary matrices. Suppose we are using the most efficient method to find the inverse, by most efficient I mean the least number of steps:, Last, if A is row-equivalent to In, we can write A as a product of elementary matrices, each of which is invertible. Since a product of invertible matrices is invertible (by Corollary 2.6.10), we conclude that A is invertible, as needed. Exercises for 2.8 Skills, Feb 22, 2019 · Writing a matrix as a product of elementary matrices, using row-reductionCheck out my Matrix Algebra playlist: https://www.youtube.com/playlist?list=PLJb1qAQ... , A matrix \(P\) that is the product of elementary matrices corresponding to row interchanges is called a permutation matrix. Such a matrix is obtained from the identity matrix by arranging the rows in a different order, so it has exactly one \(1\) in each row and each column, and has zeros elsewhere., Now, by Theorem 8.7, each of the inverses E 1 − 1, E 2 − 1, …, E k − 1 is also an elementary matrix. Therefore, we have found a product of elementary matrices that converts B back into the original matrix A. We can use this fact to express a nonsingular matrix as a product of elementary matrices, as in the next example., the determinat of a product of matrices is the product of the determinants, and an elementary matrix of type 1) has negative determinat (it is an alternating multilinear …, It turns out that you just need matrix corresponding to each of the row transformation above to come up with your elementary matrices. For example, the elementary matrix corresponding to the first row transformation is, $$\begin{bmatrix}1 & 0\\5&1\end{bmatrix}$$ Notice that when you multiply this matrix with A, it does exactly the first ... , Denote by the columns of the identity matrix (i.e., the vectors of the standard basis).We prove this proposition by showing how to set and in order to obtain all the possible elementary operations. Let us start from row and column interchanges. Set Then, is a matrix whose entries are all zero, except for the following entries: As a consequence, is …, Writting a matrix as a product of elementary matrices Hot Network Questions Sci-fi first-person shooter set in the future: father dies saving kid, kid is saved by a captain, final mission is to kill the president, Elementary matrices are square matrices obtained by performing only one-row operation from an identity matrix I n I_n I n . In this problem, we need to know if the product of two elementary matrices is an elementary matrix. , If the elementary matrix E results from performing a certain elementary row operation f on \(I_n\) and if A is an \(m\times n\) matrix, then the product EA is the matrix that results this same row elementary operation is performed on A, i.e., \(f(a)=EA\). Proof. It is straightforward by considering the three types of elementary row operations., Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals. For math, science, nutrition, history ... , This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: 1. Consider the matrix A=⎣⎡103213246⎦⎤ (a) Use elementary row operations to reduce A into the identity matrix I. (b) List all corresponding elementary matrices. (c) Write A−1 as a product of ..., 9 0 0 0 Inverses and Elementary Matrices and E−1 3 = 0 0 0 −5 0 0 1 . Suppose that an operations. Let × n matrix E1, E2, ..., is carried to a matrix B (written A → B) by a series …, If the E-row operation is denoted by R, then R(AB) = R(A).B. (b) Any E-column operation on the product of two matrices is equivalent to the same E- column ..., $\begingroup$ Note that if the product of two or more square matrices is invertible, then each factor of the product is an invertible matrix. As it happens the invertibility of elementary matrices is easy to prove using the fact that each elementary row operation is reversed by an elementary row operation of the same type. $\endgroup$ –, Of course, properties such as the product formula were not proved until the introduction of matrices. The determinant function has proved to be such a rich topic of research that between 1890 and 1929, Thomas Muir published a five-volume treatise on it entitled The History of the Determinant.We will discuss Charles Dodgson’s fascinating …, Thus is row equivalent to I. E Thus there exist elementary matrices IßáßI"5 such that: IIIáIIEœM55 "5 # #" Ê EœÐIIáIÑMœIIáIÞ"# "# " " " " " " 55 So is a product of elementary matrices.E Also, note that if is a product ofEE elementary matrices, then is nonsingular since the product of nonsingular matrices is nonsingular. Thus, Preview Elementary Matrices More Examples Goals I De neElementary Matrices, corresponding to elementary operations. I We will see that performing an elementary row operation on a matrix A is same as multiplying A on the left by an elmentary matrix E. I We will see that any matrix A is invertibleif and only ifit is the product of elementary matrices., Elementary Matrices Definition An elementary matrix is a matrix obtained from an identity matrix by performing a single elementary row operation. The type of an elementary matrix is given by the type of row operation used to obtain the elementary matrix. Remark Three Types of Elementary Row Operations I Type I: Interchange two rows., Matrix P is invertible as a product of invertible matrices, with the inverse P−1.Now, if x^ solves the rst system, i.e., Ax^ = b, then it also solves the second one, since it is given by PAx^ = Pb.In the opposite direction, if x~ solves the second system then it also solves the rst one, since it is obtained as P−1A′x~ = P−1b′. To conclude, if one needs to solve a system …, The converse statements are true also (for example every matrix with 1s on the diagonal and exactly one non-zero entry outside the diagonal) is an elementary matrix. The main result about elementary matrices is that every invertible matrix is a product of elementary matrices. , It would depend on how you define "elementary matrices," but if you use the usual definition that they are the matrices corresponding to row transpositions, multiplying a row by a constant, and adding one row to another, it isn't hard to show all such matrices have nonzero determinants, and so by the product rule for determinants, (det(AB)=det(A)det(B) ), the product of elementary matrices ..., Express a matrix as product of elementary matrices - MATLAB Answers - MATLAB Central. Follow. 17 views (last 30 days) Show older comments. Shaukhin on 1 Apr 2023. 0. Answered: KSSV on 1 Apr 2023. How to express a matrix as a product of some necessary elementary matrices? Is there any function in matlab? Dyuman Joshi on 1 Apr 2023., A payoff matrix, or payoff table, is a simple chart used in basic game theory situations to analyze and evaluate a situation in which two parties have a decision to make. The matrix is typically a two-by-two matrix with each square divided ..., add a multiple of one row to another row. Elementary column operations are defined similarly (interchange, addition and multiplication are performed on columns). When elementary operations are carried out on identity matrices they give rise to so-called elementary matrices. Definition A matrix is said to be an elementary matrix if and only if ..., In mathematics, an elementary matrix is a matrix which differs from the identity matrix by one single elementary row operation. The elementary matrices generate the general linear group GL n (F) when F is a field. Left multiplication (pre-multiplication) by an elementary matrix represents elementary row operations, while right multiplication (post …, Expert Answer. if you s …. Express the following invertible matrix A as a product of elementary matrices You can resize a matrix when appropriate) by clicking and dragging the bottom-right corner of the matrix -3 2 Number of Matrices: 1 A0 0 00., An elementary matrix is a square matrix formed by applying a single elementary row operation to the identity matrix. Suppose is an matrix. If is an elementary matrix formed by performing a certain row operation on the identity matrix, then multiplying any matrix on the left by is equivalent to performing that same row operation on . As there ... , This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: 3. Consider the matrix A=⎣⎡103213246⎦⎤. (a) Use elementary row operations to reduce A into the identity matrix I. (b) List all corresponding elementary matrices. (c) Write A−1 as a product of ..., Express the following invertible matrix A as a product of elementary matrices. The idea is to row-reduce the matrix to its reduced row echelon form, keeping track of each individual row operation. Step 1. Switch Row1 and Row2. This corresponds to multiplying A on the left by the elementary matrix. Step 2., (a) Use elementary row operations to find the inverse of A. (b) Hence or otherwise solve the system: x − 3y − 3z = 7 − 1 2 x + y + z = −3 x − 2y − z = 4 (c) Express A−1 as a product of elementary matrices. (d) Express A as a product of elementary matrices. Give an explicit expression for each elementary matrix.